Actions of prostaglandins on the arterial system of the sheep: some structure-activity relationships

R. L. JONES

Department of Pharmacology, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ

Injection of prostaglandin D₂ (PGD₂) into the thoracic aorta of the sheep produces within a few seconds a short lasting rise in systemic arterial blood pressure; the isomeric PGE₂ elicits a fall in blood pressure by this route (Horton & Jones, 1974). A direct action on arterial resistance vessels is indicated for both effects. $PGF_{2\alpha}$ is about 60 times less active than PGD₂ as a pressor agent and PGF_{2β} about 150 times less active than PGE₂ as a depressor agent.

Two further observations have been made.

- (a) If a sheep is given an intravenous infusion of PGA₁ (0.6-5.0 mg kg⁻¹ h⁻¹), a pronounced fall in blood pressure is produced from which there is partial recovery during the infusion. PGE₂ now fails to produce a depressor response whereas PGD_2 and $PGF_{2\alpha}$ are unaffected. Under these conditions $PGF_{2\beta}$ gives a pressor response.
- (b) In the pregnant ewe, the depressor response to intra-aortic PGE₂ is attenuated (Horton & Maule Walker, 1974). The sensitivity to the pressor actions of PGD_2 and $PGF_{2\alpha}$ is maintained however. PGF₂₈ produces a biphasic response, pressor to depressor, which can be mimicked by injecting an appropriate mixture of PGD₂ and PGE₂.

These results indicate that a particular prostaglandin can act on two systems in the peripheral vasculature to cause vasconstriction and vasodilatation, the resultant effect dependent on its relative potencies on the two systems and the relative sensitivities of the systems.

A number of other prostaglandins have been investigated and two major structure-activity relationships have emerged.

- (i) Oxidation of the 15(S)-hydroxyl to a ketone results in loss of depressor activity. Thus 15-oxo PGE₁ elicits no change in blood pressure at doses 100-300 times the dose of PGE₁ producing a fall of 10 mm Hg. In contrast, pressor activity is either unaffected or enhanced and 15-oxo $PGF_{2\alpha}$ is 5-10 times more active than $PGF_{2\alpha}$. 15-oxo $PGF_{2\beta}$ is a pressor agent of low potency.
- (ii) Saturation of the 5,6-cis and 13,14-trans double bonds results in marked loss of pressor activity. Thus PGD_2 and 15-oxo $PGF_{2\alpha}$ are about 8 times more active than PGD₁ and 15-oxo PGF_{1 α} respectively and about 100 times more active than 13,14-dihydro PGD₁ and 13,14-dihydro-15-oxo $PGF_{1\alpha}$ respectively. Depressor activity is little affected by these changes and the potencies of the 2-, 1-, and 13,14-dihydro-1-series analogues with either the E, 11-deoxy E, A or B ring structures differ by less than a factor of three.

Of the compounds tested it is suggested that 15-oxo PGF_{2 α} shows the highest specificity for the pressor system, and 13,14-dihydro PGE₁ the highest specificity for the depressor system.

Further studies will be concerned with the identification of systems in other tissues showing similar agonist structure-activity relationships. In this connexion, the recent report by Dawson, Lewis, McMahon & Sweatman (1974) showing that $PGF_{2\alpha}$, 15-oxo $PGF_{2\alpha}$ and PGD_2 are of the same order of potency as bronchoconstrictor agents is of great interest.

References

- DAWSON, W., LEWIS, R.L., McMAHON, R.E. & SWEATMAN, W.F. (1974). Potent bronchoconstrictor activity of 15-keto prostaglandin F₂₀. Nature., 250,
- HORTON, E.W. & JONES, R.L. (1974). Biological activity of prostaglandin D, on smooth muscle. Br. J. Pharmac., 52, 110-111P.
- HORTON, E.W. & MAULE WALKER, F. (1974). Reduced sensitivity of vascular smooth muscle to prostaglandins E₂ and A₃ during pregnancy in sheep and rabbits. J. Endocr. In press.